Problem Set 4
Math 113: Linear Algebra and Matrix Theory
If you notice any mistakes, please email the CA: ddore@stanford.edu
April 21, 2021

1 Textbook problems
2B: 4, 7, 8
2C: 3, 10, 14, 15

2 Matrix multiplication
Let \(A \) be an \(m \times n \) matrix and \(B \) be a \(k \times m \) matrix. Consider the linear maps \(T_A : \mathbb{F}^n \to \mathbb{F}^m \) and \(T_B : \mathbb{F}^m \to \mathbb{F}^k \) as defined in Lecture 11. Prove that
\[
T_B \circ T_A = T_{BA}
\]
as linear maps \(\mathbb{F}^n \to \mathbb{F}^k \), where we \(BA \) is the matrix multiplication of \(B \) and \(A \).

3 Finite fields revisited
Let \(\mathbb{F} \) be a field with finitely many elements. Recall the definition of \(c_\mathbb{F} \) from your first problem set before you proceed.

i) Prove that \(c_\mathbb{F} \) must be a prime number.

ii) Let \(c_\mathbb{F} = p \). Show that \(\mathbb{F} \) can be equipped with a scalar multiplication and vector addition which makes it a vector space over \(\mathbb{F}_p \). (Hint: You might try to find \(\mathbb{F}_p \) as a subfield inside \(\mathbb{F} \) in order to define the vector space structure, similar to how \(\mathbb{R} \) was a vector space over \(\mathbb{Q} \) in PSet 2.)

iii) Show that \(|\mathbb{F}| = p^n \) for some positive integer \(n \).

iv) Construct a field with 4 elements.

Remarks (You do not have to prove these statements, they are just remarks)

• There is exactly one field with \(p^n \) elements for each prime \(p \) and positive integer \(n \).
The fields where $1 + 1 + \cdots + 1 = 0$ for some $m > 1$ are called finite characteristic fields. They do not have to have finitely many elements. One can again show that the smallest such m has to be a prime p. Therefore, if the field is not finite, we have an infinite dimensional vector space over \mathbb{F}_p.

If you have free time, you might want to think or read about fields with p^n elements or infinite fields with finite characteristic.