The Poisson bracket invariant: Elementary and Hard Approaches

Shira Tanny

Tel Aviv University
PLAN:

• Background (Polterovich’s conjecture)

• Elementary approach in dimension 2
 Joint with Lev Buhovsky and Aleksandr Logunov

• Grothendieck’s theorem and linear symplectic geometry
 Joint with Efim Gluskin

• Floer homology of Hamiltonians supported on subsets
 Joint with Yaniv Ganor
PLAN:

• Background (Polterovich’s conjecture)
PLAN:

- Background (Polterovich’s conjecture)
- Elementary approach in dimension 2
 Joint with Lev Buhovsky and Aleksandr Logunov
PLAN:

• Background (Polterovich’s conjecture)

• Elementary approach in dimension 2
 Joint with Lev Buhovsky and Aleksandr Logunov

• Grothendieck’s theorem and linear symplectic geometry
 Joint with Efim Gluskin
PLAN:

• Background (Polterovich’s conjecture)

• Elementary approach in dimension 2
 Joint with Lev Buhovsky and Aleksandr Logunov

• Grothendieck’s theorem and linear symplectic geometry
 Joint with Efim Gluskin

• Floer homology of Hamiltonians supported on subsets
 Joint with Yaniv Ganor
The Poisson bracket invariant

Recall:

\[
\{ f, g \} := \frac{d}{dt} f \circ \varphi^t g = \omega(X_f, X_g).
\]

\(U \subset M \) is displaceable if

\[\exists f, \phi \quad f(U) \cap U = \emptyset. \]

Entov-Polterovich:

\[(M; !) \text{ closed.} \]

Let

\[\bullet U := \{ U_i \}_{i=1}^N \text{ an open cover of } M, \]

\[\bullet F := \{ f_i \}_{i=1}^N \text{ a subordinate partition of unity.} \]

If the sets are displaceable, then there exist

\[i; j \] with

\[\{ f_i; f_j \} \neq 0 : \]

Definition

The Poisson bracket invariant is defined by

\[
\text{pb}(F) := \max \left| x_i \right|, \left| y_j \right| \leq \frac{1}{n} \sum x_i f_i \circ X_j y_j f_j \in C_0.
\]

\[
\text{pb}(U) := \inf F < U \text{ pb}(F).
\]
Recall: \(\{f, g\} := \frac{d}{dt} f \circ \varphi^t_f = \omega(X_f, X_g) \).

Entov-Polterovich
The Poisson bracket invariant

Recall: \(\{f, g\} := \frac{d}{dt} f \circ \phi_g^t = \omega(X_f, X_g) \).

\(U \subset M \) is displaceable if \(\exists f, \varphi_f^1(U) \cap U = \emptyset \).

Entov-Polterovich
The Poisson bracket invariant

Recall: \(\{f, g\} := \frac{d}{dt} f \circ \varphi_g^t = \omega(X_f, X_g) \).

\(U \subset M \) is displaceable if \(\exists f, \varphi_f \) such that \(\varphi_f(U) \cap U = \emptyset \).

Entov-Polterovich: \((M, \omega)\) closed. Let

- \(\mathcal{U} := \{U_i\}_{i=1}^N \) an open cover of \(M \),
- \(\mathcal{F} := \{f_i\}_{i=1}^N \) a subordinate partition of unity.

If the sets are displaceable, then there exist \(i, j \) with \(\{f_i, f_j\} \neq 0 \):

- a cover by displaceable sets

Definition

The Poisson bracket invariant is defined by

\[
pb(F) := \max |x_i|, |y_j| \leq 1 \sum x_i f_i \wedge X_j y_j f_j \in C_0.
\]

\[
pb(U) := \inf F < U pb(F)
\]
The Poisson bracket invariant

Recall: \(\{f, g\} := \frac{d}{dt} f \circ \varphi_g^t = \omega(X_f, X_g) \).

\(U \subset M \) is displaceable if \(\exists f, \varphi_f^1(U) \cap U = \emptyset \).

Entov-Polterovich: \((M, \omega)\) closed. Let

- \(\mathcal{U} := \{U_i\}_{i=1}^N \) an open cover of \(M \),
- \(\mathcal{F} := \{f_i\}_{i=1}^N \) a subordinate partition of unity.

If the sets are displaceable, then there exist \(i, j \) with \(\{f_i, f_j\} \neq 0 \).
The Poisson bracket invariant

Recall: \(\{ f, g \} := \frac{d}{dt} f \circ \varphi_t^g = \omega(X_f, X_g) \).

\(U \subset M \) is displaceable if \(\exists f, \varphi_f^1(U) \cap U = \emptyset \).

Entov-Polterovich: \((M, \omega)\) closed. Let

- \(U := \{U_i\}_{i=1}^N \) an open cover of \(M \),
- \(F := \{f_i\}_{i=1}^N \) a subordinate partition of unity.

If the sets are displaceable, then there exist \(i, j \) with \(\{f_i, f_j\} \neq 0 \).
The Poisson bracket invariant

Recall: \(\{f, g\} := \frac{d}{dt} f \circ \varphi_g^t = \omega(X_f, X_g) \).

\(U \subset M \) is displaceable if \(\exists f, \varphi_f^1(U) \cap U = \emptyset \).

Entov-Polterovich: \((M, \omega)\) closed. Let

- \(\mathcal{U} := \{U_i\}_{i=1}^N \) an open cover of \(M \),
- \(\mathcal{F} := \{f_i\}_{i=1}^N \) a subordinate partition of unity.

If the sets are displaceable, then there exist \(i, j \) with \(\{f_i, f_j\} \neq 0 \).

Definition
The Poisson bracket invariant is defined by

\[
pb(\mathcal{F}) :=
\]
The Poisson bracket invariant

Recall: \(\{f, g\} := \frac{d}{dt} f \circ \varphi^t_g = \omega(X_f, X_g) \).

\(U \subset M \) is displaceable if \(\exists f, \varphi^1_f(U) \cap U = \emptyset \).

Entov-Polterovich: \((M, \omega)\) closed. Let

- \(U := \{U_i\}_{i=1}^N \) an open cover of \(M \),
- \(\mathcal{F} := \{f_i\}_{i=1}^N \) a subordinate partition of unity.

If the sets are displaceable, then there exist \(i, j \) with \(\{f_i, f_j\} \neq 0 \).

Definition
The Poisson bracket invariant is defined by

\[
\text{pb}(\mathcal{F}) := \left\{ \sum_i x_i f_i, \sum_j y_j f_j \right\}
\]

one strip is not displaceable
The Poisson bracket invariant

Recall: \(\{f, g\} := \frac{d}{dt} f \circ \varphi^t_g = \omega(X_f, X_g) \).

\(U \subset M \) is displaceable if \(\exists f, \varphi^1_f(U) \cap U = \emptyset \).

Entov-Polterovich: \((M, \omega)\) closed. Let

- \(U := \{U_i\}_{i=1}^N \) an open cover of \(M \),
- \(\mathcal{F} := \{f_i\}_{i=1}^N \) a subordinate partition of unity.

If the sets are displaceable, then there exist \(i, j \) with \(\{f_i, f_j\} \neq 0 \).

Definition
The Poisson bracket invariant is defined by

\[
pb(\mathcal{F}) := \left\| \left\{ \sum_i x_if_i, \sum_j y_jf_j \right\} \right\|_{C^0},
\]
The Poisson bracket invariant

Recall: \(\{ f, g \} := \frac{d}{dt} f \circ \varphi_g^t = \omega(X_f, X_g) \).

\(U \subset M \) is displaceable if \(\exists f, \varphi_f (U) \cap U = \emptyset \).

Entov-Polterovich: \((M, \omega)\) closed. Let

- \(\mathcal{U} := \{ U_i \}_{i=1}^N \) an open cover of \(M \),
- \(\mathcal{F} := \{ f_i \}_{i=1}^N \) a subordinate partition of unity.

If the sets are displaceable, then there exist \(i, j \) with \(\{ f_i, f_j \} \neq 0 \).

Definition
The Poisson bracket invariant is defined by

\[
pb(\mathcal{F}) := \max_{\sum |x_i|, |y_j| \leq 1} \left\| \sum_i x_i f_i, \sum_j y_j f_j \right\|_{C^0},
\]

one strip is not displaceable
The Poisson bracket invariant

Recall: \(\{ f, g \} := \frac{\partial}{\partial t} f \circ \varphi_t^g = \omega(X_f, X_g) \).

\(U \subset M \) is displaceable if \(\exists f, \varphi_f^1(U) \cap U = \emptyset \).

Entov-Polterovich: \((M, \omega)\) closed. Let

- \(U := \{ U_i \}_{i=1}^N \) an open cover of \(M \),
- \(\mathcal{F} := \{ f_i \}_{i=1}^N \) a subordinate partition of unity.

If the sets are displaceable, then there exist \(i, j \) with \(\{ f_i, f_j \} \neq 0 \).

Definition
The Poisson bracket invariant is defined by

\[
pb(\mathcal{F}) := \max_{|x_i|, |y_j| \leq 1} \left\| \sum_i x_i f_i, \sum_j y_j f_j \right\|_{C^0},
\]

\[
pb(U) := \inf_{\mathcal{F} \subset U} pb(\mathcal{F}).
\]
Polterovich’s Conjecture:
There exists a constant $C = C(M, \omega)$ depending only on the symplectic manifold, such that

$$\text{pb}(\mathcal{U}) \cdot e(\mathcal{U}) \geq C$$
The Poisson bracket invariant

Polterovich’s Conjecture:
There exists a constant $C = C(M, \omega)$ depending only on the symplectic manifold, such that

$$pb(U) \cdot e(U) \geq C$$

↑

maximal

displacement energy
Polterovich’s Conjecture:
There exists a constant $C = C(M, \omega)$ depending only on the symplectic manifold, such that

$$ pb(U) \cdot e(U) \geq C $$

↑

maximal

displacement energy

Related works:
Polterovich’s Conjecture:
There exists a constant $C = C(M, \omega)$ depending only on the symplectic manifold, such that

$$\mathcal{Pb}(U) \cdot \mathcal{E}(U) \geq C$$

↑

maximal

displacement energy

Related works:

Theorem (Buhovsky-Logunov-T.)
Let (M, ω) be a surface endowed with an area form. There exists a universal constant C such that

$$\mathcal{Pb}(U) \cdot \mathcal{E}(U) \geq C.$$
Lemma (Buhovsky-Logunov-T.)
There exists a constant $c(n)$ depending only on the dimension, such that for every finite collection of functions $\mathcal{F} := \{f_i\}$,

\[
\frac{1}{c(n)} \left\| \sum_{i,j} |\{f_i, f_j\}| \right\| \leq \text{pb}(\mathcal{F}) \leq \left\| \sum_{i,j} |\{f_i, f_j\}| \right\|
\]
Lemma (Buhovsky-Logunov-T.)
There exists a constant $c(n)$ depending only on the dimension, such that for every finite collection of functions $\mathcal{F} := \{f_i\}$,

$$\frac{1}{c(n)} \left\| \sum_{i,j} |\{f_i, f_j\}| \right\| \leq pb(\mathcal{F}) \overset{\Delta}{=} \left\| \sum_{i,j} |\{f_i, f_j\}| \right\|$$
Lemma (Buhovsky-Logunov-T.)
There exists a constant $c(n)$ depending only on the dimension, such that for every finite collection of functions $\mathcal{F} := \{f_i\}$,

$$\frac{1}{c(n)} \left\| \sum_{i,j} |\{f_i, f_j\}| \right\| \leq pb(\mathcal{F}) \overset{\Delta}{=} \left\| \sum_{i,j} |\{f_i, f_j\}| \right\|$$

Originally, had $c(n) \propto \exp(n)$.
Lemma (Buhovsky-Logunov-T.)
There exists a constant $c(n)$ depending only on the dimension, such that for every finite collection of functions $\mathcal{F} := \{f_i\}$,

$$\frac{1}{c(n)} \left\| \sum_{i,j} |\{f_i, f_j\}| \right\| \leq pb(\mathcal{F}) \overset{\Delta}{\leq} \left\| \sum_{i,j} |\{f_i, f_j\}| \right\|$$

Originally, had $c(n) \propto \exp(n)$.

Using Grothendieck’s theorem from functional analysis:

Theorem (Gluskin-T.): $c(n) \leq 10\sqrt{n}$.
Lemma (Buhovsky-Logunov-T.)
There exists a constant $c(n)$ depending only on the dimension, such that for every finite collection of functions $\mathcal{F} := \{f_i\},$

$$\frac{1}{c(n)} \left\| \sum_{i,j} \{f_i, f_j\} \right\| \leq pb(\mathcal{F}) \leq \Delta \leq \left\| \sum_{i,j} \{f_i, f_j\} \right\|$$

Pointwise inequality implies inequality for the norms

$$\frac{1}{c(n)} \sum_{i,j=1}^{N} |\omega(v_i, v_j)| \leq \max_{|x_i|, |y_j| \leq 1} \sum_{i,j} x_i \cdot y_j \cdot \omega(v_i, v_j)$$
Lemma (Buhovsky-Logunov-T.)
There exists a constant $c(n)$ depending only on the dimension, such that for every finite collection of functions $\mathcal{F} := \{f_i\}$,

$$\frac{1}{c(n)} \left\| \sum_{i,j} |\{f_i, f_j\}| \right\| \leq p_b(\mathcal{F}) \leq \left\| \sum_{i,j} |\{f_i, f_j\}| \right\|$$

Pointwise inequality implies inequality for the norms

$$\frac{1}{c(n)} \sum_{i,j=1}^{N} |\omega(v_i, v_j)| \leq \max_{|x_i|, |y_j| \leq 1} \sum_{i,j} x_i \cdot y_j \cdot \omega(v_i, v_j)$$

Considering the matrix $A = (a_{ij})_{i,j=1}^{N}$ where $a_{ij} := \omega(v_i, v_j)$, this is equivalent to:
Lemma (Buhovsky-Logunov-T.)
There exists a constant $c(n)$ depending only on the dimension, such that for every finite collection of functions $\mathcal{F} := \{f_i\}$,

$$\frac{1}{c(n)} \left\| \sum_{i,j} \{f_i, f_j\} \right\| \leq pb(\mathcal{F}) \leq \left\| \sum_{i,j} \{f_i, f_j\} \right\|$$

Pointwise inequality implies inequality for the norms

$$\frac{1}{c(n)} \sum_{i,j=1}^{N} |\omega(v_i, v_j)| \leq \max_{|x_i|, |y_j| \leq 1} \sum_{i,j} x_i \cdot y_j \cdot \omega(v_i, v_j)$$

Considering the matrix $A = (a_{ij})_{i,j=1}^{N}$ where $a_{ij} := \omega(v_i, v_j)$, this is equivalent to:

$$\frac{1}{c(n)} \sum_{i,j=1}^{N} |a_{ij}| \leq \|A\|_{\mathcal{L}(\ell^\infty_1, \ell^1_1)}$$
Lemma (Buhovsky-Logunov-T.)
There exists a constant $c(n)$ depending only on the dimension, such that for every finite collection of functions $\mathcal{F} := \{f_i\}$,

$$\frac{1}{c(n)} \left\| \sum_{i,j} |\{f_i, f_j\}| \right\| \leq p_b(\mathcal{F}) \leq \left\| \sum_{i,j} |\{f_i, f_j\}| \right\|$$

Pointwise inequality implies inequality for the norms

$$\frac{1}{c(n)} \sum_{i,j=1}^{N} |\omega(v_i, v_j)| \leq \max_{|x_i|, |y_j| \leq 1} \sum_{i,j} x_i \cdot y_j \cdot \omega(v_i, v_j)$$

Considering the matrix $A = (a_{ij})_{i,j=1}^{N}$ where $a_{ij} := \omega(v_i, v_j)$, this is equivalent to:

$$\frac{1}{c(n)} \sum_{i,j=1}^{N} |a_{ij}| \leq \|A\|_{\mathcal{L}(\ell_\infty^N, \ell_1^N)}$$
Theorem (Grothendieck / Pisier)

Let $A = (a_{ij})_{m \times n}$ be an $m \times n$ matrix. There exist:

- an $m \times n$ matrix B,
- vectors $(\mathbf{1}; \ldots; \mathbf{m})$ and $(\mathbf{1}; \ldots; \mathbf{n})$ with non-negative entries and Euclidean norms bounded by 1 such that

$$A = \text{diag}(\mathbf{1}; \ldots; \mathbf{m}) \cdot B \cdot \text{diag}(\mathbf{1}; \ldots; \mathbf{n})$$

and

$$\|B\|_{\ell^\infty_2, \ell^1_m} \leq K_G \cdot \|A\|_{\ell^\infty_\infty, \ell^\infty_2}$$

Here K_G is a universal constant ("Grothendieck’s constant"), whose exact value is unknown.
Theorem (Grothendieck / Pisier)

Let $A = (a_{ij})_{i=1}^{m},_{j=1}^{n}$ be an $m \times n$ matrix. There exist:

- an $m \times n$ matrix B,
- vectors $(\mathbf{1}; \ldots; \mathbf{m})$ and $(\mathbf{1}; \ldots; \mathbf{n})$ with non-negative entries and Euclidean norms bounded by 1 such that

$$A = \text{diag}(\mathbf{1}; \ldots; \mathbf{m}) \cdot B \cdot \text{diag}(\mathbf{1}; \ldots; \mathbf{n})$$

and

$$\|B\|_{\ell^n_2, \ell^m_2} \leq K_G \cdot \|A\|_{\ell^n_\infty, \ell^m_1}$$

Here K_G is a universal constant ("Grothendieck’s constant"), whose exact value is unknown.
Grothendieck’s theorem about factorization

Theorem (Grothendieck / Pisier)

Let $A = (a_{ij})_{i=1,j=1}^{m,n}$ be an $m \times n$ matrix. There exist:

- an $m \times n$ matrix B,
Theorem (Grothendieck / Pisier)

Let $A = (a_{ij})_{i=1}^{m}{}_{j=1}^{n}$ be an $m \times n$ matrix. There exist:

- an $m \times n$ matrix B,
- vectors $(\lambda_1, \ldots, \lambda_m)$ and (μ_1, \ldots, μ_n) with non-negative entries and Euclidean norms bounded by 1

Here K_G is a universal constant ("Grothendieck's constant"), whose exact value is unknown.
Theorem (Grothendieck / Pisier)
Let $A = (a_{ij})_{i=1,j=1}^{m,n}$ be an $m \times n$ matrix. There exist:

- an $m \times n$ matrix B,
- vectors $(\lambda_1, \ldots, \lambda_m)$ and (μ_1, \ldots, μ_n) with non-negative entries and Euclidean norms bounded by 1

such that

$$A = \text{diag}(\lambda_1, \ldots, \lambda_m) \cdot B \cdot \text{diag}(\mu_1, \ldots, \mu_n)$$
Theorem (Grothendieck / Pisier)
Let $A = (a_{ij})_{i=1}^{m},_{j=1}^{n}$ be an $m \times n$ matrix. There exist:

- an $m \times n$ matrix B,
- vectors $(\lambda_1, \ldots, \lambda_m)$ and (μ_1, \ldots, μ_n) with non-negative entries and Euclidean norms bounded by 1

such that

$$A = \text{diag}(\lambda_1, \ldots, \lambda_m) \cdot B \cdot \text{diag}(\mu_1, \ldots, \mu_n)$$

and

$$\|B\|_{\mathcal{L}(\ell_2^n, \ell_2^m)} \leq K_G \cdot \|A\|_{\mathcal{L}(\ell_\infty^n, \ell_1^m)}$$
Grothendieck’s theorem about factorization

Theorem (Grothendieck / Pisier)

Let \(A = (a_{ij})_{i=1,j=1}^{m,n} \) be an \(m \times n \) matrix. There exist:

- an \(m \times n \) matrix \(B \),
- vectors \((\lambda_1, \ldots, \lambda_m) \) and \((\mu_1, \ldots, \mu_n) \) with non-negative entries and Euclidean norms bounded by 1

such that

\[
A = \text{diag}(\lambda_1, \ldots, \lambda_m) \cdot B \cdot \text{diag}(\mu_1, \ldots, \mu_n)
\]

and

\[
\|B\|_{\mathcal{L}(\ell_2^n, \ell_2^m)} \leq K_G \cdot \|A\|_{\mathcal{L}(\ell_\infty^n, \ell_1^m)}
\]
Grothendieck’s theorem about factorization

Theorem (Grothendieck / Pisier)

Let $A = (a_{ij})_{i=1,j=1}^{m,n}$ be an $m \times n$ matrix. There exist:

- an $m \times n$ matrix B,
- vectors $(\lambda_1, \ldots, \lambda_m)$ and (μ_1, \ldots, μ_n) with non-negative entries and Euclidean norms bounded by 1

such that

$$A = \text{diag}(\lambda_1, \ldots, \lambda_m) \cdot B \cdot \text{diag}(\mu_1, \ldots, \mu_n)$$

and

$$\|B\|_{\ell_2^n, \ell_2^m} \leq K_G \cdot \|A\|_{\ell_\infty^n, \ell_1^m}$$

Here K_G is a universal constant (“Grothendieck’s constant”), whose exact value is unknown.
Polterovich’s conjecture in higher dimensions.
Polterovich’s conjecture in higher dimensions

Polterovich’s conjecture

Floer homology; spectral invariants; lower bounds for pb (for aspherical manifolds:)

The action functional \(A_f \) is defined on the space of contractible loops in \(M \).

• \(CF^* (f) \) is generated by \(\text{Crit}(A_f) = \) 1-periodic orbits of \(f \), \((t) = t f(0) \).

• \(@: CF^*(f) \to CF^*_{-1}(f) \) counts negative gradient flow-lines of \(A_f = \) certain cylinders between periodic orbits.

\[\Rightarrow HF^*(f) : = H^*(CF^*(f) ; @) \sim H^*(M) \].

Entov-Polterovich-Zapolsky: lower bounds in terms of spectral width of the sets.
Decay with the number of sets.

Polterovich: spectral width of disjoint unions of the sets.

\[\Rightarrow \] Study spectral invariants of disjointly supported Hamiltonians:
Seyfaddini, Ishikawa, Humilière-Le Roux-Seyfaddini

Theorem (HLS, “Max-formula”)

Suppose \(F \) and \(G \) are supported in disjoint incompressible Liouville domains on a symplectically aspherical manifold. Then,

\[c(F + G ; [M]) = \max \{ c(F ; [M]) , c(G ; [M]) \} \]
Polterovich’s conjecture in higher dimensions

- Floer homology
- spectral invariants
- lower bounds for pb

The action functional A_f is defined on the space of contractible loops in M.

- $\text{CF}^*(f)$ is generated by $\text{Crit}(A_f) = 1$-periodic orbits of f, $(t) = \frac{d}{dt} f(t)$.
- $\partial: \text{CF}^*(f) \to \text{CF}^{* - 1}(f)$ counts negative gradient flow-lines of $A_f = \text{certain cylinders between periodic orbits}$.

$HF^*(f) := H^*(\text{CF}^*(f))$; $\partial \sim H^*(M)$.

Entov-Polterovich-Zapolsky: lower bounds in terms of spectral width of the sets. Decay with the number of sets.

Polterovich: spectral width of disjoint unions of the sets.

\Downarrow

Study spectral invariants of disjointly supported Hamiltonians: Seyfaddini, Ishikawa, Humilière-Le Roux-Seyfaddini

Theorem (HLS, “Max-formula”)

Suppose F and G are supported in disjoint incompressible Liouville domains on a symplectically aspherical manifold. Then,

$$c(F + G; [M]) = \max\{c(F; [M]), c(G; [M])\}.$$
Polterovich’s conjecture in higher dimensions

Floer homology \sim spectral invariants \sim lower bounds for pb

(for aspherical manifolds:) The action functional \mathcal{A}_f is defined on the space of contractible loops in M.
Polterovich’s conjecture in higher dimensions

Floer homology \sim **spectral invariants** \sim **lower bounds for pb**

(for aspherical manifolds:) The action functional \mathcal{A}_f is defined on the space of contractible loops in M.

- $\text{CF}_*(f)$ is generated by $\text{Crit}(\mathcal{A}_f) = 1$-periodic orbits of f, $\gamma(t) = \varphi_f^t(\gamma(0))$.

$\mathcal{L}M$
Polterovich’s conjecture in higher dimensions

Floer homology \sim spectral invariants \sim lower bounds for pb

(for aspherical manifolds:) The action functional \mathcal{A}_f is defined on the space of contractible loops in M.

- $CF_\ast(f)$ is generated by $\text{Crit}(\mathcal{A}_f) = 1$-periodic orbits of f, $\gamma(t) = \varphi_f^t(\gamma(0))$.

- $\partial : CF_\ast(f) \to CF_{\ast-1}(f)$ counts negative gradient flow-lines of $\mathcal{A}_f = \text{certain cylinders between periodic orbits.}$
Polterovich’s conjecture in higher dimensions

Floer homology \rightsquigarrow spectral invariants \rightsquigarrow lower bounds for pb

(for aspherical manifolds:) The action functional A_f is defined on the space of contractible loops in M.

- $CF_*(f)$ is generated by $Crit(A_f) = 1$-periodic orbits of f, $\gamma(t) = \varphi_f^t(\gamma(0))$.

- $\partial: CF_*(f) \to CF_{*-1}(f)$ counts negative gradient flow-lines of $A_f = \text{certain cylinders between periodic orbits}$.

$\Rightarrow HF_*(f) := H_*(CF_*(f), \partial) \cong H_*(M)$.

Entov-Polterovich-Zapolsky: lower bounds in terms of spectral width of the sets.

Decay with the number of sets.

Polterovich: spectral width of disjoint unions of the sets.

⇓ Study spectral invariants of disjointly supported Hamiltonians: Seyfaddini, Ishikawa, Humilière-Le Roux-Seyfaddini

Theorem (HLS, “Max-formula”)

Suppose F and G are supported in disjoint incompressible Liouville domains on a symplectically aspherical manifold. Then,

$$c(F + G; [M]) = \max\{c(F; [M]), c(G; [M])\}.$$
Polterovich’s conjecture in higher dimensions

Floer homology \sim \text{spectral invariants} \sim \text{lower bounds for } pb
Polterovich’s conjecture in higher dimensions

Floer homology \mapsto spectral invariants \mapsto lower bounds for pb

Improper Definition: For $\alpha \in H_*(M) \cong HF_*(f)$, the spectral invariant $c(f; \alpha)$ is the smallest action of a representative of α in $CF_*(f)$.
Polterovich’s conjecture in higher dimensions

Floer homology \sim spectral invariants \sim lower bounds for pb

Improper Definition: For $\alpha \in H_*(M) \cong HF_*(f)$, the spectral invariant $c(f; \alpha)$ is the smallest action of a representative of α in $CF_*(f)$.

Example:

![Diagram](image)
Polterovich’s conjecture in higher dimensions

Floer homology \rightarrow \text{spectral invariants} \rightarrow \text{lower bounds for } \operatorname{pb}

Improper Definition: For \(\alpha \in H_\ast(M) \cong HF_\ast(f) \), the spectral invariant \(c(f; \alpha) \) is the smallest action of a representative of \(\alpha \) in \(CF_\ast(f) \).

Example:

\[c(f, [pt]) = \min f \]
Polterovich’s conjecture in higher dimensions

Floer homology \sim spectral invariants \sim lower bounds for pb

Improper Definition: For $\alpha \in H_\ast(M) \cong HF_\ast(f)$, the spectral invariant $c(f; \alpha)$ is the smallest action of a representative of α in $CF_\ast(f)$.

Example:

- $c(f; [\gamma]) = f(x)$
- $c(f, [pt]) = \min f$
Polterovich’s conjecture in higher dimensions

Floer homology \sim \rightarrow \text{spectral invariants} \sim \rightarrow \text{lower bounds for } pb

Improper Definition: For \(\alpha \in H_\ast(M) \cong HF_\ast(f) \), the spectral invariant \(c(f; \alpha) \) is the smallest action of a representative of \(\alpha \) in \(CF_\ast(f) \).

Example:

- \(c(f; [M]) = \max f \)
- \(c(f; [\gamma]) = f(x) \)
- \(c(f, [pt]) = \min f \)
Polterovich’s conjecture in higher dimensions

Floer homology \leadsto spectral invariants \leadsto lower bounds for pb

Entov-Polterovich-Zapolsky: lower bounds in terms of spectral width of the sets.
Polterovich’s conjecture in higher dimensions

Floer homology \xrightarrow{\sim} \text{spectral invariants} \xrightarrow{\sim} \text{lower bounds for pb}

\textbf{Entov-Polterovich-Zapolsky}: lower bounds in terms of spectral width of the sets. Decay with the number of sets.
Polterovich’s conjecture in higher dimensions

- Floer homology \(\sim\) spectral invariants \(\sim\) lower bounds for \(pb\)

Entov-Polterovich-Zapolsky: lower bounds in terms of spectral width of the sets. Decay with the number of sets.

Polterovich: spectral width of disjoint unions of the sets.
Polterovich’s conjecture in higher dimensions

Floer homology \sim spectral invariants \sim lower bounds for pb

Entov-Polterovich-Zapolsky: lower bounds in terms of spectral width of the sets. Decay with the number of sets.

Polterovich: spectral width of disjoint unions of the sets.
Polterovich’s conjecture in higher dimensions

Floer homology \leadsto spectral invariants \leadsto lower bounds for pb

Entov-Polterovich-Zapolsky: lower bounds in terms of spectral width of the sets. Decay with the number of sets.
Polterovich: spectral width of disjoint unions of the sets.

⇓

Study spectral invariants of disjointly supported Hamiltonians:
Polterovich’s conjecture in higher dimensions

Floer homology \sim spectral invariants \sim lower bounds for pb

Entov-Polterovich-Zapolsky: lower bounds in terms of spectral width of the sets. Decay with the number of sets.

Polterovich: spectral width of disjoint unions of the sets.

⇓

Study spectral invariants of disjointly supported Hamiltonians: Seyfaddini, Ishikawa, Humilière-Le Roux-Seyfaddini
Polterovich’s conjecture in higher dimensions

\[\text{Floer homology} \sim \text{spectral invariants} \sim \text{lower bounds for } pb \]

Entov-Polterovich-Zapolsky: lower bounds in terms of spectral width of the sets. Decay with the number of sets.
Polterovich: spectral width of disjoint unions of the sets.

\[\Downarrow \]

Study spectral invariants of disjointly supported Hamiltonians: Seyfaddini, Ishikawa, Humilière-Le Roux-Seyfaddini

Theorem (HLS, ”Max-formula”)
Suppose \(F \) and \(G \) are supported in disjoint incompressible Liouville domains on a symplectically aspherical manifold. Then,

\[c(F + G; [M]) = \max\{c(F; [M]), c(G; [M])\}. \]
Floer theory of Hamiltonians supported in subsets.
Assume that:

- \((M, \omega)\) is closed, symplectically aspherical \((\omega|_{\pi_2(M)} = c_1|_{\pi_2(M)} = 0)\).
Setting

Assume that:

- (M, ω) is closed, symplectically aspherical ($\omega|_{\pi_2(M)} = c_1|_{\pi_2(M)} = 0$).

- The Hamiltonians are supported in disjoint embeddings of "nice" star-shaped domains.
Assume that:

- \((M, \omega)\) is closed, symplectically aspherical \((\omega|_{\pi_2(M)} = c_1|_{\pi_2(M)} = 0)\).

- The Hamiltonians are supported in disjoint embeddings of "nice" star-shaped domains.

More generally, consider domains with contact-type, incompressible boundaries. Call these CIB domains.
Assume that:

- \((M, \omega)\) is closed, symplectically aspherical \((\omega|_{\pi_2(M)} = c_1|_{\pi_2(M)} = 0)\).
- The Hamiltonians are supported in disjoint embeddings of "nice" star-shaped domains.

More generally, consider domains with contact-type, incompressible boundaries. Call these CIB domains.

\[i_*: \pi_1(\partial U) \to \pi_1(M) \] injective
Setting

Assume that:

- (M, ω) is closed, symplectically aspherical $(\omega|_{\pi_2(M)} = c_1|_{\pi_2(M)} = 0)$.

- The Hamiltonians are supported in disjoint embeddings of "nice" star-shaped domains.

More generally, consider domains with contact-type, incompressible boundaries. Call these CIB domains.

ok for us:

not ok:
Theorem (Ganor-T.):
• $(M_i; \Omega_i)$ are symplectically aspherical,
• V is compact with contact-type boundary,
• $i: V, \rightarrow M_1$, $j: V, \rightarrow M_2$, images are CIB domains.

For every F supported in V:
$$c(i^* F; [M_1]) = c(j^* F; [M_2]).$$

Remark:
The asphericity and incompressibility assumptions are necessary.
Theorem (Ganor-T.):

- $(\Omega_i; \sigma_i)$ are symplectically aspherical,
- V is compact with contact-type boundary,
- $\iota: V, \rightarrow M_1, \eta: V, \rightarrow M_2$, images are CIB domains.

For every F supported in V:

$$c_{M_1}(\iota_\ast [M_1]) = c_{M_2}(\eta_\ast [M_2]).$$

Remark:
The asphericity and incompressibility assumptions are necessary.
Theorem (Ganor-T.):

- \((M_i; V)\) are symplectically aspherical,
- \(V\) is compact with contact-type boundary,
- \(i: V, j: V \to M_1, j: V \to M_2\) images are CIB domains.

For every \(F\) supported in \(V\):

\[c(i_*F; [M_1]) = c(j_*F; [M_2]) \]

Remark: The asphericity and incompressibility assumptions are necessary.
Results

Theorem (Ganor-T.):

- \((M_i; q_i)\) are symplectically aspherical,
- \(V\) is compact with contact-type boundary,
- \(i: V \to M_1, j: V \to M_2\) images are CIB domains.

For every \(F\) supported in \(V\):

\[c(i_*F; [M_1]) = c(j_*F; [M_2]) \]

Remark: The asphericity and incompressibility assumptions are necessary.
Theorem (Ganor-T.):

- \((M_i, \omega_i)\) are symplectically aspherical,
- \(V\) is compact with contact-type boundary,
- \(i : V \hookrightarrow M_1, j : V \hookrightarrow M_2\), images are CIIB domains.

For every \(F\) supported in \(V\):

\[
c(i_* F ; [M_1]) = c(j_* F ; [M_2]).
\]
Results

Theorem (Ganor-T.):

- \((M_i, \omega_i)\) are symplectically aspherical,
- \(V\) is compact with contact-type boundary,
- \(i : V \hookrightarrow M_1, j : V \hookrightarrow M_2\), images are CIB domains.

For every \(F\) supported in \(V\):
\[
c(i \ast F; [M_1]) = c(j \ast F; [M_2]).
\]

Remark:
The asphericity and incompressibility assumptions are necessary.
Theorem (Ganor-T.):
Let F and G be Hamiltonians supported in disjoint CIB domains, then:

1. $c(F + G; \cdot) \leq \max\{c(F; \cdot), c(G; \cdot)\}$, for every $H^* \in H^*(M)$.

2. $(F + G) \geq \max\{F, G\}$, where \cdot is the boundary depth.

3. $c_{AHS}(F + G) \leq \min\{c_{AHS}(F), c_{AHS}(G)\}$, where c_{AHS} is an action selector defined recently by Abbondandolo, Haug and Schlenk.

Definition:
For a non-degenerate Hamiltonian F, consider homotopies of Hamiltonians H and J such that $H - J = F$, and denote by $M(H, J)$ is the set of solutions of Floer equation with respect to (H, J).
Then, $c_{AHS}(F) = \sup (H, J) \min_{u \in M(H, J)} A_F(u(-\infty))$.

Theorem (HLS):
On surfaces (other than S^2) and for autonomous Hamiltonians, every action selector satisfying the min-formula coincides with $c(\cdot; \cdot)$.
Theorem (Ganor-T.): Let F and G be Hamiltonians supported in disjoint CIB domains, then:

1. $c(F + G; \alpha) \leq \max\{c(F; \alpha), c(G; \alpha)\}$, for every $\alpha \in H_*(M)$.

Definition: For a non-degenerate Hamiltonian F, consider homotopies of Hamiltonians H and a.c.s. J such that $H - F = 0$, and denote by $M(H, J)$ is the set of solutions of Floer equation with respect to (H, J). Then, $c_{AHS}(F) = \sup_{(H, J)} \min_{u \in M(H, J)} A_F(u(\infty))$.

Theorem (HLS): On surfaces (other than S^2) and for autonomous Hamiltonians, every action selector satisfying the min-formula coincides with $c(\cdot; \lbrack \text{pt} \rbrack)$.

Theorem (Ganor-T.):
Let F and G be Hamiltonians supported in disjoint CIB domains, then:

1. $c(F + G; \alpha) \leq \max\{c(F; \alpha), c(G; \alpha)\}$, for every $\alpha \in H_*(M)$.

(notice HLS+PD $\Rightarrow c(F + G; [pt]) = \min\{c(F; [pt]), c(G; [pt])\}$)
Theorem (Ganor-T.):
Let F and G be Hamiltonians supported in disjoint CIB domains, then:

1. $c(F + G; \alpha) \leq \max\{c(F; \alpha), c(G; \alpha)\}$, for every $\alpha \in H_*(M)$.
 (notice HLS+PD $\Rightarrow c(F + G; [pt]) = \min\{c(F; [pt]), c(G; [pt])\}$)

2. $\beta(F + G) \geq \max\{\beta(F), \beta(G)\}$, where β is the boundary depth.
Theorem (Ganor-T.):
Let F and G be Hamiltonians supported in disjoint CIB domains, then:

1. $c(F + G; \alpha) \leq \max\{c(F; \alpha), c(G; \alpha)\}$, for every $\alpha \in H_*(M)$.
 (notice HLS+PD $\Rightarrow c(F + G; [pt]) = \min\{c(F; [pt]), c(G; [pt])\}$)

2. $\beta(F + G) \geq \max\{\beta(F), \beta(G)\}$, where β is the boundary depth.

3. $c_{AHS}(F + G) \leq \min\{c_{AHS}(F), c_{AHS}(G)\}$, where c_{AHS} is an action selector defined recently by Abbondandolo, Haug and Schlenk.
Theorem (Ganor-T.):

Let F and G be Hamiltonians supported in disjoint CIB domains, then:

1. $c(F + G; \alpha) \leq \max\{c(F; \alpha), c(G; \alpha)\}$, for every $\alpha \in H_\ast(M)$.

 (notice HLS+PD $\Rightarrow c(F + G; [pt]) = \min\{c(F; [pt]), c(G; [pt])\}$)

2. $\beta(F + G) \geq \max\{\beta(F), \beta(G)\}$, where β is the boundary depth.

3. $c_{AHS}(F + G) \leq \min\{c_{AHS}(F), c_{AHS}(G)\}$, where c_{AHS} is an action selector defined recently by Abbondandolo, Haug and Schlenk.

Definition:

For a non degenerate Hamiltonian F, consider homotopies of Hamiltonians H and a.c.s. J such that $H_- = F$, and denote by $\mathcal{M}(H, J)$ is the set of solutions of Floer equation with respect to (H, J). Then,

$$c_{AHS}(F) = \sup_{(H,J)} \min_{u \in \mathcal{M}(H,J)} A_F(u(-\infty)).$$
Theorem (Ganor-T.):
Let F and G be Hamiltonians supported in disjoint CIB domains, then:

1. $c(F + G; \alpha) \leq \max\{c(F; \alpha), c(G; \alpha)\}$, for every $\alpha \in H_*(M)$.
 (notice HLS+PD $\Rightarrow c(F + G; [pt]) = \min\{c(F; [pt]), c(G; [pt])\}$)

2. $\beta(F + G) \geq \max\{\beta(F), \beta(G)\}$, where β is the boundary depth.

3. $c_{AHS}(F + G) \leq \min\{c_{AHS}(F), c_{AHS}(G)\}$, where c_{AHS} is an action selector defined recently by Abbondandolo, Haug and Schlenk.

Theorem (HLS):
On surfaces (other than S^2) and for autonomous Hamiltonians, every action selector satisfying the min-formula coincides with $c(\cdot; [pt])$.
Locality in Morse homology

1. Lines starting in V, away from the boundary, are contained in V.
2. Lines ending in V are contained in V.

Starting on the "bump", can flow both in and out.
Notice:

1. Lines starting in \(V \), away from the boundary, are contained in \(V \).
2. Lines ending in \(V \) are contained in \(V \).

Starting on the "bump", can flow both in and out.
Notice:

1. lines starting in V, away from the boundary, are contained in V,
Notice:

1. lines starting in V, away from the boundary, are contained in V,
2. lines ending in V are contained in V.
Notice:

1. lines starting in V, away from the boundary, are contained in V,
2. lines ending in V are contained in V.

Starting on the “bump”, can flow both in and out.
The main tool: Barricades

Theorem (Ganor-T.):
Suppose F is supported in a CIB domain V. Then, there exists a perturbation f of F, and an almost complex structure J, such that for every solution u of the Floer equation with respect to (f, J):

1. If u starts in $V \setminus \mathcal{N}(\partial V)$, then $\text{im}(u) \subset V \setminus \mathcal{N}(\partial V)$.
2. If u ends in V, then $\text{im}(u) \subset V$.
The main tool: Barricades

Theorem (Ganor-T.):
Suppose F is supported in a CIB domain V. Then, there exists a perturbation f of F, and an almost complex structure J, such that for every solution u of the Floer equation with respect to (f,J):

1. If u starts in $V \setminus \mathcal{N}(\partial V)$, then $\text{im}(u) \subset V \setminus \mathcal{N}(\partial V)$.
2. If u ends in V, then $\text{im}(u) \subset V$.

[Diagrams showing allowed and forbidden trajectories]
The main tool: Barricades

Under the decomposition

$$CF(f) = C_{V \setminus \mathcal{N}(\partial V)} \oplus C_{M \setminus V} \oplus C_{\mathcal{N}(\partial V)},$$

the differential takes a triangular block form:

$$\partial_{f,j} = \begin{pmatrix}
\partial|_{V \setminus \mathcal{N}(\partial V)} & 0 & \partial|_V \\
0 & * & * \\
0 & 0 & \partial|_V
\end{pmatrix}$$
The main tool: Barricades

Under the decomposition

\[CF(f) = C_{\mathcal{V}\setminus\mathcal{N}(\partial V)} \oplus C_{\mathcal{M}\setminus\mathcal{V}} \oplus C_{\mathcal{N}(\partial V)}, \]

the differential takes a triangular block form:

\[
\partial_{f,J} = \begin{pmatrix}
\partial|_{\mathcal{V}\setminus\mathcal{N}(\partial V)} & 0 & \partial|_{\mathcal{V}} \\
0 & * & *
\end{pmatrix}
\]
Constructing Barricades:

\[\Gamma := u^{-1}(\partial V) \]

Claim: \(A(\Gamma) > \max_{V_c} f \)

\(+ \) slope

if non-aspherical

contradict to action decr. along \(u \).

incomp: \(\int_{\partial U} \omega = \int_{\Gamma} \alpha \)
"Proof" of locality:

\(\text{Supp}(F) \subset V \)

\[i(V) \]

\[M_1 \]

\[M_2 \]

Want: \[\gamma_{M_1}^u(x; [f]) = \gamma_{M_2}^u(x; [f]) \]

Pert w. Barricades

\[\alpha \in CF(f) \text{ rep } [f] \]

of lowest action

Assume: \(\alpha \subset V \setminus W(AV) \)

\[\exists \alpha' = 0 \]

Barrière

| (1) \(\tilde{f} \alpha' = 0 \) |
| (2) \(\alpha' | \text{im}(\tilde{f}) \) |

Resolved using continuation maps corresponding to homotopies \(f, f' \to \text{small Morse} \).
Thank you!