May 23

Gluing. Consider the setting of Floer theory. Let \(\dim \mathcal{M}(x, y) = \dim \mathcal{M}(y, z) = 1 \). Then there exists a gluing map

\[
\text{glue} : \hat{\mathcal{M}}(x, y) \times (R_0, \infty) \times \hat{\mathcal{M}}(y, z) \to \hat{\mathcal{M}}(x, z)
\]

which satisfies the following property: as \(R \to \infty \),

\[
\text{glue}(u, v, R) \to u \cup v \text{ in the Gromov sense.}
\]

The idea is basic: “glue” \(u \in \mathcal{M}(x, y) \) and \(v \in \mathcal{M}(y, z) \) to get \(Z \to M \) which is close to being in \(\mathcal{M}(x, z) \). One thing to keep in mind is that everything should be done parametrically in the gluing parameter \(R \).

We define the pre-gluing of two curves \(u, v \) by the following picture

\[
\begin{array}{ccc}
 & v(s + R, t) & \\
-u \#_R v = & y(t) & u(s - R, t) \\
-\frac{R}{2} & & \frac{R}{2}
\end{array}
\]

where we use the Riemannian exponential function to interpolate between the two solutions. This is well-defined for \(R \) sufficiently large since \(u(t, s) \to y(t) \) as \(s \to \infty \) (and similarly for \(v(t, s) \)). We will start using only \(u \) for \(s > 3R/4 \) and only \(v \) for \(s < -3R/4 \). Interpolation only happens when \(|s| \) is in \([R/2, 3R/4]\). As \(R \to \infty \), the left side covers all of \(v \) and the right side covers all of \(u \).

It is important to note that the pregluing \(u \#_R v \) is not actually a solution of the Floer equation. However, one can show that a linearization of \(\partial \) at \(u \#_R v \) is surjective (assuming that the moduli space \(\mathcal{M}(x, z) \) is cut transversally). You can use the implicit function theorem to show that there is an actual solution nearby. The hard part is to make sure that for every \(R \) you get a different solution. We want this because we want the the glueing map to be a diffeomorphism onto a “boundary” neighborhood of \(u \cup v \).

Newton’s iteration. The way one turns the pregluing map into a gluing map is based on Newton’s iteration to find zeros of a function. Recall:

Proposition 1. Let \(f : \mathbb{R}^k \to \mathbb{R}^k \) be a smooth map and suppose \(f(x_0) = 0 \) and \(df_{x_0} \) is invertible. Define a map

\[
x \in \mathbb{R}^k \mapsto \varphi(x) := x - df_{x_0}^{-1} \cdot f(x)
\]

Then \(\varphi \) is a contraction on a neighborhood of \(x_0 \).

Proof. Compute

\[
df_{x_0}(\varphi(x) - \varphi(y)) = f(x) - f(y) - df_{x_0}(x - y).
\]
By continuous differentiability of f, we may suppose that there is a small neighborhood around x_0 so that for all x, y in this neighborhood we have
\[
|f(x) - f(y) - df_{x_0}(x - y)| \leq \frac{1}{2} |df_{x_0}|^{-1} |x - y|,
\]
whence $|\varphi(x) - \varphi(y)| < 1/2|x - y|$, as desired. \(\square\)

Let’s first explain how we hope to apply Newton’s method to our problem. Consider the embedding $R \mapsto u \# R v$. We can think of this as defining an embedded curve Σ in the ambient space of maps. The moduli space $M(x, z)$ is the zero set of a section. Newton’s method prescribes a way to converge to the zero set of a function, and hopefully it can be applied parametrically to “project” Σ onto $M(x, z)$ (in a one-to-one fashion) – this will be how we turn our pre-gluing map into a gluing map.

Let’s look at a simpler situation where we hope to apply Newton’s method parametrically. Consider a map $f : R^2 \to R$. Let Σ be an embedded one-parameter family of points in R^2, which is “close” in some sense to $f^{-1}(0)$. Let p be a point on $f^{-1}(0)$, and suppose that $df_p : R^2 \to R$ is surjective. The naive generalization of Newton’s method to the parametric setting would be pick a right inverse $L_p : R \to R^2$ for df_p and to consider the map
\[
\varphi(x) = x - L_p f(x).
\]

The observation is that fixed points of φ are precisely the points on the zero locus. Unfortunately one quickly realizes that φ cannot be a contraction, since it has multiple fixed points in arbitrarily small neighborhoods of p. Therefore, it is not obvious that the Newton iteration $x, \varphi(x), \varphi^2(x), \cdots$ converges, and so a priori we do not get a “projection” onto the zero locus.

Idea. The idea is to foliate a neighborhood of Σ so that the map f is bijective on the leaves, and then show that Newton’s iteration converges on each leaf. We should think of leaves as obtained by exponentiating the subspaces given by the inverse L.

We still need to construct the right-inverses (subspaces) with some uniform upper bounds (on the derivative of the chosen right inverse of df) and Salomon does that in the notes.

Henceforth we will assume that we have defined an open embedding
\[
\text{glue} : \hat{M}(x, y) \times (R_0, \infty) \times \hat{M}(y, z) \to \hat{M}(x, z),
\]
whenever $\hat{M}(x, y)$ and $\hat{M}(y, z)$ are 0-dimensional and $\hat{M}(x, z)$ is 1-dimensional, which satisfies the aforementioned convergence to the broken flow lines as $R \to \infty$. These gluing maps give us charts for the moduli space near the boundary points – we conclude that $\hat{M}(x, z)$ can be compactified into a one-dimensional manifold with boundary.

Orientations. We need to have $\partial^2 = 0$ which immediately follows from compactness and gluing when we work over \mathbf{F}_2 (or any algebra over \mathbf{F}_2).

\[
\langle \partial^2 x, z \rangle = \sum_y \#M(x, y) \times_y \hat{M}(y, z) = \# \partial M(x, z).
\]
This argument about why $\partial^2 = 0$ is originally due to Floer.

If we are not working over \mathbf{F}^2, then we need to assign ± 1 to each rigid solution (i.e. index 1) so that $\partial^2 = 0$.

The Determinant bundle. It is important to notice that Λ^0 (any \mathbb{R}-vector space) $= \mathbb{R}$ (including the zero vector space). An orientation of a manifold is an orientation of the real-line bundle $\Lambda^{\text{max}} TM$.

Let V, W be \mathbb{R}-vector spaces, let $\varphi : V \to W$ be a linear map. Define

$$\det(\varphi) = \Lambda^{\text{max}} \ker \varphi \otimes \Lambda^{\text{max}} (\text{coker} \varphi)^*.$$

If X is a topological space, and $\Phi : X \to \text{Hom}(V, W)$ is continuous, then there is a canonical line bundle $\det \Phi \to X$ whose fiber at x is identified with the vector space $\det \Phi(x)$.

There are similar statements for Fredholm operators.

Example 2. In our construction we have a Banach space bundle $E \to \mathcal{P}$ and a section $s = \bar{\partial}_{H,J}$. The derivative of the linearization (well-defined on the zero section) can be thought of as a continuous map $s^{-1}(0) \to \text{Fredholm Operators}$. We therefore obtain a determinant line bundle $\det(Ds) \to s^{-1}(0)$. If s is transverse to the zero section (i.e. if H, J are chosen regular), then

$$\det(Ds) = \Lambda^{\text{max}} \ker(Ds) = \Lambda^{\text{max}} T s^{-1}(0) = \Lambda^{\text{max}} TM(x^\pm).$$

Therefore, orienting $\det Ds$ is equivalent to orienting the (parametrized) moduli space.

Moreover, if u is rigid, $\mathcal{M}(x^\pm)$ has a canonical orientation at u (obtained by translating the curve, i.e. moving in the direction $\partial_u u \in TM$).

Therefore we can orient the rigid solutions in two different ways, and therefore get signs according to whether the orientations agree or not.

Families of linear operators. In the next lecture, we will consider all linear operators of the form

$$\frac{\partial \xi}{\partial s} + J_0 \frac{\partial \xi}{\partial t} + S(s, t) \xi,$$

where $S(s, t)$ are appropriately asymptotically constant at infinity.